
Natural Language Processing for Intelligent Virtual Assistant
System

Mykyta Syromiatnikov1, Victoria Ruvinskaya1

1 Odessа Polytechnic State University, Shevchenko av., 1, Odesa, 65044, Ukraine

Abstract
This article provides a result of the concept creation and development procedure of a natural

language processing service for an intelligent digital assistant system. The tasks to be solved

by the service have been identified, they include intent detection, named-entity recognition,

question answering, ranking, multi-label classification, and text normalization. The method

of deep learning model optimization based on knowledge distillation was proposed and

evaluated. Also, the method for multilingual open-domain question answering using gradient

boosting over decision trees, multilingual vector embeddings, and deep learning models has

been developed. As a result, the NLP service, which contains data processing algorithms, an

extended neural network training method aimed at inference productivity optimization, and

original deep learning models showing high accuracy on test sets for English, Russian and

Ukrainian languages, was developed.

Keywords 1
Natural language processing, machine learning, deep learning, data mining, text processing,

virtual assistant system

1. Introduction

Nowadays, the growth rate of digital sphere development is increasing exponentially: a lot of

modern services and applications burst into our lives and brand-new formats of interaction are

becoming a reality. At the same time, outdated channels of interaction with users remain and it is
almost impossible for a significant percentage of small and medium-sized businesses to fully

automate their wide range of services, resulting in an excessive waste of time for people and an

increase in operating expense for companies. This hypothesis was confirmed by the challenge of the
COVID-19 pandemic: the rapid transition of consumers to digital channels of interaction has led to

situations where the fate of companies was decided by the speed of their digitalization [1].

If you look at the super apps [2] of market leaders like Google, Facebook, Tencent, you can find
one of the possible solutions that work in practice. Its essence lies in the integration of one or more

natural language interfaces (NLI) [3], often the implementation is carried out in the form of a smart

assistant or an intelligent helper, which is a software agent that can process user requests and in-

dependently perform tasks of various kinds with the help of the owner’s data or settings. The possible
functionality includes interaction with smart home devices and synchronized services such as email,

calendar, music. “The term chatbot is sometimes used to refer to virtual assistants with a text chat

interface.” [4]. Chatbots are usually created by using natural language processing technologies (NLP).
There are also voice assistants that use speech recognition and synthesis in addition to text processing

algorithms.

Due to the exponential growth of computing power and textual content in recent years, the NLP

industry is developing very actively: new architectures of in-depth learning models are published,
existing ones are improved, and active work is carried out to increase the training efficiency of current

Information Control Systems and Technologies (ICST-ODESSA-2021), September 23–25, 2021, Odesa, Ukraine

EMAIL: nik.syromyatnikov@gmail.com; ruvinska@opu.ua;

ORCID: 0000-0002-0610-3639 (Mykyta Syromiatnikov); 0000-0002-7243-5535 (Victoria Ruvinskaya);

©️ 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

state-of-the-art methods [5]. The development of the sphere is also facilitated by the expansion of
possible areas of application: technologies for processing the natural language are used not only in

search engines but also to automate call centers and FAQ-systems, write news [6], program code [7],

etc. At the same time, for a wide range of languages, there is a problem with the quality and quantity

of task-specific data. That is why a lot of research and practice is devoted to transfer learning and
language model creation.

2. Description of Problem

In general, the virtual assistant system contains various functional modules that are used to

generate a response and execute actions, like ordering or reservation.
Figure 1 shows one of the possible options for implementing the architecture of an intelligent

assistant system, the functionality of which includes more than ten different functional modules such

as search, viewing news, weather forecasts, and ordering.

Figure 1: Virtual assistant system architecture

Microservice architecture is a quite popular design approach for this kind of product since it is

aimed at decomposing functionality into separate services, minimizing the coupling [8], and

maximizing cohesion [9]. It is also worth noting, that in our case, the interaction takes place using a
text interface through the web application and messengers with the implemented Bot API

functionality. Flowing through API and authorization, the user request enters the message processing

service (MESSAGES on architectural diagram). The figure shows that MESSAGES interacts with the
natural language processing service called NLPService, the development of which we are considering

in this publication.

Localization for the countries of Europe and the CIS region is provided, with special attention paid

to the Ukrainian, Russian and English languages. That is why it is important in our case to build an
NLP service with multilingual support. Therefore, for this purpose, a combination of neural networks

with a high-level context understanding, generalization ability, and machine learning algorithms with

an optimal speed-accuracy trade-off would be used to develop common functionality for this domain,
such as intent detection, named-entity recognition, text normalization, etc.

Most of the existing open-source solutions have a weak coverage of Eastern Europe, and high-

accuracy, multifunctional systems with support for CIS languages are either difficult to integrate or

extremely expensive. Therefore, the work aims to design and develop the natural language processing
service for a virtual assistant system using the synthesis of standard machine learning and state-of-the-

art deep learning methods with special attention paid to the productivity and accuracy of models for

Russian, Ukrainian, and English languages.

3. Literature review

Various algorithms and methods of the natural language processing sphere are used for the tasks of

text mining and transformation of the user's natural queries into a structural form. In narrowly focused

systems, the use of approaches based on rules and regular expressions is justified [10], because they
have fairly high productivity and do not require significant computational resources. However, if we

are talking about open-domain virtual assistants, then their high intelligence can be achieved using

deep neural networks.
One of the well-established solutions is recurrent neural networks (RNN), ideal for sequential data.

Widespread RNN-type networks are LSTM and GRU, which solve vanishing/exploding gradient

problems. The gated recurrent network has fewer parameters than long short-term memory but may

achieve compatible accuracy in some speech recognition tasks [11].
In 2014, the Encoder-Decoder architecture with two recurrent neural networks was proposed. The

Encoder encodes a sequence of characters into a fixed-length vector, and the Decoder decodes the

context vector into another sequence of fixed-length characters [12]. Unlike standard recurrent
models, this architecture allows obtaining the resulting sequences with a different length from the

input sequence. One of the Encoder-Decoder implementations, Seq2Seq, has brought significant

improvements in the quality of machine translation [13].
In recent years, the state-of-the-art results of natural language understanding and generation have

been demonstrated by various implementations of the Transformer architecture published in 2017. In

contrast to Encoder-Decoder, Transformer contains not recurrent and convolutional layers but dense

ones along with proposed multi-head attention mechanism and positional encoding for simultaneous
sequence processing.

Language models, networks that determine the probability of characters, words, n-grams

occurrence in the sequence, based on Transformer architecture, such as BERT, Transformer-XL,
BigBird, and autoregressive GPT and XLNet, demonstrate state-of-the-art accuracy in most tasks of

the field after training on massive text corpora.

The disadvantages of this architecture include the need for significant computing resources for the

training stage and inference. To address the problem of slow model computations one can use
quantization to reduce weights size and degrade accuracy [14], model transfer from

Pytorch/Tensorflow backend to ONNX Runtime, or knowledge distillation procedure with a smaller

model creation [15].

4. Models and methods development

4.1. NLPService concept

As it was stated in the problem description section, the natural language processing service

functionality includes intent detection, named-entity recognition, and text normalization. However,

this is not enough for an open-domain assistant. The complete functional requirements are

demonstrated in the use-case diagram (Figure 2).

Figure 2: NLPService use cases

Generally, intent detection is the task of retrieving user intention from the input sequences of text,

speech, or even images. For example, the sentence “show me the wind speed forecast for tomorrow”

can be recognized as intent “weather.wind.speed”. The level of detail, in this case, depends on the

specific requirements of the system, i.e., it is possible to determine the intention of "weather-forecast"
instead, however, then it is necessary to introduce additional logic into the weather service to obtain a

specific action after it has been called. To build the NLPService, the first option would be used, since

this approach reduces the functional load on the services.
Named-entity recognition (NER) is a very important part of text mining. The NER task aims at

extracting from the text sequence as many useful named entities (e.g., names, time, and date) as it is

possible. These entities then flow to the service, defined by the intent, and are used to personalize
answers or make relevant service responses.

Text normalization is a required stage after named entities have been recognized since in natural

languages there may be various declensions of words, plurality, and genders. Most of the time, the

goal of normalization is to find the normal form of the word or group of words, but in some cases, it is
important to match the form with the surroundings as the context of the sequence may be changed

otherwise.

Context question answering is the core part of quick answer functionality. Given the question and
text paragraph, the task is to return the segment of the paragraph, which is the most relevant. For the

open-domain question answering where there are multiple paragraphs, it is required to use ranking

first. The purpose of this action is to find one or several relevant passages in the storage, where there
can be billions of them. To speed up the ranking, multi-label topic classification, which predicts

multiple labels (e.g., science, history, art) for every text sequence, would be applied.

4.2. Fine-tuning BERT for question answering task

To solve the problem of answering the question (QA), a deep learning model based on the BERT
architecture (Figure 3) would be used. Bidirectional Encoder Representations from Transformers or

BERT is a language model [16] based on the Transformer architecture, which is an improvement of

Encoder-Decoder, where the encoder creates context vector from the input sequence and the decoder

generates output based on the hidden states. A feature of the Transformer is an improved attention
mechanism and the use of feedforward networks, which allows processing the entire input sequence at

once, in contrast to the RNN networks. Only encoder layers are used in BERT, along with
embeddings and pooling. BertEmbeddings uses tokenizer output to create a representation of the input

sequence and feed it to the BertLayers. Word_embeddings layer is used to build the vectorized form

of input tokens, position_embeddings introduce such an important property as the order of tokens in

sequence [17]. The token_type_embeddings layer helps the model to understand where one sequence
ends and another one starts, in the case of question answering those segments are question and text

paragraph. For this purpose, the special token “[SEP]” is used. There is also a LayerNorm to

normalize the activities of the neurons and reduce training time [18]. The dropout regularization
method with a 0.1 probability to deactivate hidden units is used to reduce model overfitting.

Figure 3: BERT for question answering architecture

BertLayer contains a dense layer with GELU activation and self-attention – a mechanism, which
“allows the inputs to interact with each other (“self”) and find out whom they should pay more

attention to (“attention”)” [19]. Several successive applications of this layer with different weights
allow the model to form a representation of the meaning, grammar, or other aspects of the input

vector with the help of other elements of the text sequence. The size of the hidden layers and their

quantity depends on the model type, for this work the 12-layer network with 768 units each was

chosen.
As the BERT model pretraining includes those tasks: masked language model (MLM) [16] and

next sentence prediction (NSP) [16], there are at least two possible options for output selection. The

first one is the sequence output, which is the result of forward pass through all of the encoder layers
sequentially for every input token. During the training, the output from hidden layers is taken for the

MLM task, where the model has to predict words, which are replaced by the special mask token, in a

sequence. The second one is the pooler output with a single result for the “[CLS]” token (this is the
first element of input), the purpose of this type of output is to return the confidence of similarity of

two text sequences for the NSP problem. However, the pooler output can also be used for various text

classification tasks.

For the question answering procedure, we add fine-tuning head on top of the model. The sequence
output flows to the dropout and linear layer, which returns logits for start and end positions for each

input token. After that, all that remains is to apply the argmax function to get start/end token positions

of the answer. Fine-tuning for 5-7 epochs on the combination of localized SQUAD v2.0 [20] and
SberQuAD [21] datasets with a batch size of 20, a maximum input sequence length of 384, and

scheduled learning rate with an initial value of 5e-05 shows compatible accuracy metrics.

4.3. Extended method of knowledge distillation

The inference speed of the obtained model is unaccepted for our situation. To solve this problem
the extended method of knowledge distillation would be used. The method itself represents procedure,

where the high-quality model (teacher) participates in the training of a smaller network (student). This

significantly increases the speed of inference, as the student is not so complicated, and decreases

required training time [15]. Knowledge transfer is achieved using a modified loss function:

)ˆ,ˆ()1(),ˆ(__ teacherstudentlossdistilstudentstudentlosstrain yyLyyLL −+=  (1)

where L is the cost function for the training procedure;

─ a is the distillation parameter, which determines the influence of the teacher model;

─ Ltrain_loss – loss function of student model prediction and ground truth value;
─ Ldistil_loss – loss function of student and teacher models predictions.

It can be seen from the formula that with the parameter α = 1 the standard training loss function is

obtained due to zeroing of the distillation. For the training loss, one can use any task-suitable

objective function, but for a distillation term in a form of the deviation of a student from the teacher, it
is recommended to apply such distance functions as mean square error or a Kullback-Leibler

divergence [22]. The following formula is used as the train_loss for the question answering task:

2

)_,()_,(
_

posendendCEposstartstartCE
L losstrain

+
=

(2)

where CE is a cross-entropy loss function;

─ start and end are logits for the start/end position of the answer. Logit refers to the tensor on which
we apply the argmax function to get the position;

─ start_pos and end_pos – exact indices of start/end for answer span.

At the same time, the distil_loss function is implemented as follows:

2

))(),(())(),((
2

_

t

end
S

t

end
LnKL

t

start
S

t

start
LnKL

t

teachteach

lossdistilL
+

=
(3)

where KL is a Kullback-Leibler divergence function;

─ t or a temperature is a denominator used in knowledge distillation to flatten logits;
─ S – softmax function, which transforms values to probability distribution;

─ Ln – softmax function with the subsequent application of the natural logarithm;

─ start and end are logits for the start/end position of the answer;

─ startteach and endteach are teacher model logits for the start/end position.

Our extended knowledge distillation procedure consists of the following stages:

1. Fine-tune the 12-layer BERT model for a specific task to obtain the best accuracy.

2. Build a smaller model with 4 layers - DistilBert.

3. Init student with the teacher weights from the 1st, 4th, 8th, and 12th layers.

4. Set 𝛼 parameter within [0.3, 0.7] and increase the learning rate by 1-1.5 times.

5. Train student model on the extended dataset with augmented data.

The weights transfer is an important part of this method, as it helps to reduce the number of steps

needed for the optimizer to find the global extrema of the objective function during training.

4.4. Fine-tuning BERT for the multi-label topic classification task

The goal of this classification is to obtain one or several labels for the input text. In our case, there

are 21 topic labels: person, nature, organization, geo, location, facility, product, event, art, politics,

achievement, science, news, sport, business, religion, encyclopedia, how-to, social networks, NSFW,

and other. As for the QA task, the BERT model (Figure 4) would be used to solve this problem.

Figure 4: BERT for multi-label classification architecture

The input text sequence flows through the tokenizer to the model. After the forward pass via
BERT, the pooler output is used as the fine-tuning head input. The head itself contains dropout

regularization with drop probability = 0.2 and a subsequent linear layer, which has 21 outputs, one for

each label. There is also a softmax layer to transform the output into a probability distribution. The

last step is to pass this distribution through a threshold to zero all unmatched labels.
The multilingual dataset with 6255 records was build using Wikipedia and news articles

annotation. Fine-tuning for BERT-base-multilingual-uncased took 7 epochs with binary cross-entropy

as objective function, learning rate = 3e-05, sequence length = 512 and batch size = 32. A distilled 4-
layers version was build based on this model. The distillation loss function is similar to those,

presented in equation 1.

4.5. Fine-tuning BERT for the ranking task

Fine-tuning for the ranking task (Figure 5) is carried out using the pooler output of the BERT
model, dropout with p = 0.25, linear layer, and sigmoid to transform the output into the confidence of

similarity and dissimilarity.

Figure 5: BERT for ranking architecture

The training dataset contains 185000 Wikipedia query-passage pairs with appropriate similarity

labels in Russian, Ukrainian, and English languages. For fine-tuning procedure, those parameters
were chosen: 3 epochs with learning rate = 2e-05, sequence length = 368 and batch size = 4.

4.6. Extended method of multilingual open-domain question answering

For the fast answer functionality, we use the extended method of multilingual open-domain

question answering [23], the detailed architecture of which is presented in Figure 6. Here

DistilBertForMultiLabels is the distilled model from the multi-label classification chapter. Laser is the
technique released by Facebook AI Research to create multilingual vector embeddings [24], XGBoost

– gradient boosting over decision trees model, which calculates similarity for embedding vectors of

input sequences, and BertForQA is the model, needed to provide a fast answer (the most relevant

fragment of text passages) on user request. The simplified algorithm is as follows:

1. Obtaining topic labels and vector embedding for the user query simultaneously.

2. Filtering stored contexts based on predicted labels.

3. Similarity calculation between the query vector and filtered contexts vectors.

4. Performing context ranking of 50 most relevant passages.

5. Searching for the most relevant segment among the top-10 passages.

As a result, this method allows to obtain a relevant text fragment, not the whole paragraph using
the BertForQA model and to solve partially the problem of paraphrasing and multilingual

representations with the help of DistilBertRanker.

Figure 6: Multilingual open-domain question answering

4.7. Fine-tuning BERT for the intent-detection task

The problem of predicting text query intention is similar to multi-label classification: based on the

input sequence we need to predict relevant tags. Except for the linear layer in the fine-tuning head,
which has an output dimension of 76. The training dataset consists of multilingual queries for 76

different types of intents, such as “knowledge.search”, “products.findTickets”, “place.book”,

“other.dialogue”, and other. Moreover, there are context intents (e.g. “context.fillPersonGivenName”,
“context.fillGeoCity”), which would help to manage dialogue context during interaction with a user

or to extract parts of complex named-entity (full name, address). The fine-tuning procedure is

performed for 12 epochs with a learning rate of 3e-05, batch size = 64, and sequence length of 64.

4.8. Fine-tuning BERT for the named-entity recognition task

The NER is one of the sequence tagging tasks, where for each token of the input sequence the tag

is assigned. To solve this problem, the BERT (Figure 7) trained on the dataset with 19 different types

of entities from CoNLL 2003 [25] would be used. The model outputs predictions in the format of

BIO-markup, where B reflects the beginning of the entity, I - the words inside the entity, and O - the
absence of entity. For example, My – O, name – O, is – O, Nikita – B-Person, Syromiatnikov – I-

Person.

Figure 7: Bert for named-entity recognition architecture

In the figure above, the sequence output of the BERT is fed into the CRF layer through the linear

layer. The CRF returns the tag sequence with the highest score.

5. Implementation

The NLPService (Figure 8) is deployed in the form of a Docker container, external requests from

the MESSAGES service pass through a proxy to the corresponding endpoint of the Flask server

inside. Flask handles query parameters: the called action, input text sequences, normalization

parameters, and the user's settings. Then they are used to execute the appropriate action from the
Model. SimBert - developed deep learning framework based on Pytorch Lightning is used to build,

prototype, and run created models. For the embeddings calculation, Laser and fastText libraries are

used, normalization algorithms were implemented using pymorphy2 [26] and polyglot [27].

Figure 8: NLPService architecture

6. Models evaluation and NLPService testing

6.1. Models evaluation

To assess the accuracy of the predictions of the developed models on test sets, we use F1 measure

- the harmonic mean of precision and recall, where precision is the fraction of true positives among

true positives and false positives and recall is the fraction of true positives among true positives and
false negatives.

The precision of the question answering models, however, is determined by the ratio of the number

of correctly predicted words of the answer to the total predicted number of words of the answer, and
recall - the ratio of correctly predicted words of the answer to the total number of words in the true

answer [28]. In addition, the EM or exact match - is also used as a measure for this task. EM = 1 for

the exact match of the predicted answer with the ground truth, and 0 in all other cases.

From the results (Table 1), one can see that the main metrics are the F1 for the whole test set and
separately for Russian (F1 ru), Ukrainian (F1 uk), and English (F1 en) languages. Moreover, an

important metric is the model performance, described by the time in seconds spent to process 100

prediction requests. It is worth noting that all of the evaluations were performed on a graphics
accelerator NVIDIA RTX 2080TI. QA models testing was performed on the SQUAD v1.1 eval set to

compare the results with a similar deeppavlov-squad-bert model [29]. In addition, the manually

assembled test set [30] was used for the Ukrainian language. The constructed named-entities

recognition model was compared with the existing deeppavlov model [31]. However, it is impractical
to compare intent detection and classification models with analogs, since those tasks require a set of

individual classes that meet specific requirements.

Table 1
The results of the models' evaluation

Models F1 EM F1 ru F1 uk F1 en Exec. time for
100 requests, sec

Ranking: Laser-XGBoost 0.809 - 0.82 0.812 0.796 0.015
Ranking: BertForRanking 0.875 - 0.93 0.917 0.784 36.2
Ranking: DistilBertForRanking 0.865 - 0.928 0.944 0.732 12
QA: BertForQA 0.891 0.813 0.905 0.921 0.875 2.35
QA: DistilBertForQA 0.824 0.68 0.83 0.815 0.817 1
QA: deeppavlov-squad-bert 0.885 0.809 0.89 0.885 0.88 3.4
Intent detection: BertForID 0.996 - 0.997 0.995 0.996 2
Intent detection: DistilBertForID 0.993 - 0.995 0.993 0.991 1
NER: BertForNER 0.875 - 0.892 0.862 0.869 15.2
NER: deeppavlov-ner-mult 0.886 - 0.89 0.858 0.909 18.4

In general, the evaluation results demonstrate the ability of the developed models to compete with

existing solutions due to small deviations in accuracy and a huge increase in productivity up to 3

times for distilled models.

6.2. NLPService testing

The context question answering is demonstrated in Figure 9. One can see that although the cons of

triboelectric devices are not discussed directly in the text, the model correctly identified the closest

paraphrased fragment of the context with the answer.

Figure 9: Question answering demonstration

Figure 10 shows the web interface for implemented intent detection functionality. For the input

sequence “Book a table at the nearest Italian restaurant for two” the intent “place.book” was obtained

with the confidence of 0.97, which is true, since this class is the most relevant among the available.

Figure 10: Intent detection demonstration

7. Conclusion

This material provides a concept and detailed development procedure of a natural language

processing service for an intelligent digital assistant system. The tasks solved by the NLPService
include intent detection, named-entity recognition, question answering, ranking, multi-label

classification, and text normalization.

The method of model optimization based on knowledge distillation, which uses certain procedures
for weights initialization and training hyperparameters selection, was proposed. It also simplifies the

process of training multilingual four-layer models of BERT architecture for specific tasks based on

the basic twelve-layer version and demonstrates 2-3 times increase of inference performance without
significant deviation in accuracy for Ukrainian, Russian and English languages on the tasks of

ranking, intent detection, multiclassification, and question answering.

Also, a method for open-domain question answering has been developed. It uses gradient boosting

over decision trees, multilingual vector embeddings, and deep learning models, which allows
obtaining a relevant text fragment and partially solves the problem of paraphrasing and multilingual

representations.

8. Acknowledgments

This work was supported by the research and development program of Chernovetskyi Investment
Group.

9. References

[1] A. Baig, B. Hall, P. Jenkins, E. Lamarre, B. McCarthy, The COVID-19 recovery will be digital:

A plan for the first 90 days, 2020. URL: https://mckinsey.com/business-functions/mckinsey-
digital/our-insights/the-covid-19-recovery-will-be-digital-a-plan-for-the-first-90-days.

[2] O. Nikolaienko, Introducing super app: a new approach to all-in-one experience, 2019. URL:

https://infopulse.com/blog/introducing-super-app-a-new-approach-to-all-in-one-experience/.
[3] L. Zhou, M. Shaikh, D. Zhang, Natural Language Interface to Mobile Devices, in: Z. Shi, Q. He

(Eds.), Intelligent Information Processing II. IIP 2004. IFIP International Federation for

Information Processing, volume 163, Springer, Boston, MA, pp. 283-286. doi:10.1007/0-387-
23152-8_37

[4] M. Hoy, Alexa, Siri, Cortana, and More: An Introduction to Voice Assistants, Medical Reference

Services Quarterly 37 (2018) 81-88. doi:10.1080/02763869.2018.1404391.

[5] J. Lee-Thorp, J. Ainslie, I. Eckstein, S. Ontanon, FNet: Mixing Tokens with Fourier Transforms
(2021). arXiv:2105.03824.

[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, Language Models are Few-Shot Learners (2020).
arXiv:2005.14165.

[7] F. Lardinois, Microsoft uses GPT-3 to let you code in natural language, 2021. URL:

https://techcrunch.com/2021/05/25/microsoft-uses-gpt-3-to-let-you-code-in-natural-language.

[8] C. Larman, Applying UML and Patterns, 3rd ed., 2004.
[9] M. Fowler, Microservices Guide, 2019. URL: https://martinfowler.com/microservices/.

[10] Yargy, Rule-based facts extraction for Russian language, 2021. URL:

https://github.com/natasha/yargy.
[11] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical Evaluation of Gated Recurrent Neural

Networks on Sequence Modeling (2014). arXiv:1412.3555.

[12] K. Cho, B. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio,
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine

Translation (2014). arXiv:1406.1078.

[13] I. Sutskever, O. Vinyals, Q. Le, Sequence to Sequence Learning with Neural Networks (2014).

arXiv:1409.3215.
[14] G. Menghani, Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller,

Faster, and Better (2021). arXiv:2106.08962.

[15] R. Tang, Y. Lu, L. Liu, L. Mou, O. Vechtomova, J. Lin, Distilling Task-Specific Knowledge
from BERT into Simple Neural Networks (2019). arXiv:1903.12136.

[16] J. Devlin, C. Ming-Wei, L. Kenton, K. Toutanova, BERT: Pretraining of Deep Bidirectional

Transformers for Language Understanding (2018). arXiv:1810.04805v2.
[17] B. Wang, L. Shang, C. Lioma, X. Jiang, H. Yang, Q. Liu, J. Simonsen, On Position Embeddings

in BERT, in: International Conference on Learning Representations, ICLR 2021. URL:

https://openreview.net/forum?id=onxoVA9FxMw.

[18] J. Lei Ba, J. Kiros, G. Hinton, Layer Normalization (2016). arXiv:1607.06450.
[19] R. Karim, Illustrated: Self-Attention, 2019. URL: https://towardsdatascience.com/illustrated-self-

attention-2d627e33b20a.

[20] P. Rajpurkar, R. Jia, P. Liang, Know What You Don't Know: Unanswerable Questions for
SQuAD (2018). arXiv:1806.03822.

[21] P. Efimov, A. Chertok, L. Boytsov, P. Braslavski, SberQuAD – Russian Reading Comprehension

Dataset: Description and Analysis (2019). arXiv:1912.09723.

[22] J. M. Joyce, Kullback-Leibler Divergence, in: M. Lovric (Eds.) International Encyclopedia of
Statistical Science, Springer, Berlin, Heidelberg, 2011. doi:10.1007/978-3-642-04898-2_327.

[23] M. Syromiatnikov, O. Tsurcan, V. Ruvinskaya, Multilingual open-domain question answering

model, in: Proceedings of the tenth international conference of young scientists and students,
2020, pp. 148-149.

[24] M. Artetxe, H. Schwenk, Massively Multilingual Sentence Embeddings for Zero-Shot Cross-

Lingual Transfer and Beyond (2018). arXiv:1812.10464.
[25] T. Kim Sang, F. Erik, F. De Meulder, Introduction to the CoNLL-2003 Shared Task: Language-

Independent Named Entity Recognition, in: Proceedings of the Seventh Conference on Natural

Language Learning at HLT-NAACL, 2003, pp. 142-147.

[26] M. Korobov, Morphological Analyzer and Generator for Russian and Ukrainian Languages, in:
Analysis of Images, Social Networks, and Texts, 2015, pp 320-332.

[27] R. Al-Rfou, Polyglot, 2014. URL: https://github.com/aboSamoor/polyglot.

[28] D. Park, V. Lakshman, Question Answering on the SQuAD Dataset. URL:
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/reports/2761899.pdf.

[29] Deeppavlov.ai, Question Answering Model for SQuAD dataset, 2021. URL:

https://docs.deeppavlov.ai/en/master/features/models/squad.html#pretrained-models.
[30] S. Tiutiunnyk, Context-based-qa-for-uk, 2020. URL: https://git.io/JcTXD.

[31] Deeppavlov.ai, Named Entity Recognition, 2021. URL:

https://docs.deeppavlov.ai/en/master/features/models/ner.html#train-and-usethe-model.

