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Abstract  
This article provides a result of the concept creation and development procedure of a natural 

language processing service for an intelligent digital assistant system. The tasks to be solved 

by the service have been identified, they include intent detection, named-entity recognition, 

question answering, ranking, multi-label classification, and text normalization. The method 

of deep learning model optimization based on knowledge distillation was proposed and 

evaluated. Also, the method for multilingual open-domain question answering using gradient 

boosting over decision trees, multilingual vector embeddings, and deep learning models has 

been developed. As a result, the NLP service, which contains data processing algorithms, an 

extended neural network training method aimed at inference productivity optimization, and 

original deep learning models showing high accuracy on test sets for English, Russian and 

Ukrainian languages, was developed.  
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1. Introduction 

Nowadays, the growth rate of digital sphere development is increasing exponentially: a lot of 

modern services and applications burst into our lives and brand-new formats of interaction are 

becoming a reality. At the same time, outdated channels of interaction with users remain and it is 
almost impossible for a significant percentage of small and medium-sized businesses to fully 

automate their wide range of services, resulting in an excessive waste of time for people and an 

increase in operating expense for companies. This hypothesis was confirmed by the challenge of the 
COVID-19 pandemic: the rapid transition of consumers to digital channels of interaction has led to 

situations where the fate of companies was decided by the speed of their digitalization [1].  

If you look at the super apps [2] of market leaders like Google, Facebook, Tencent, you can find 
one of the possible solutions that work in practice. Its essence lies in the integration of one or more 

natural language interfaces (NLI) [3], often the implementation is carried out in the form of a smart 

assistant or an intelligent helper, which is a software agent that can process user requests and in-

dependently perform tasks of various kinds with the help of the owner’s data or settings. The possible 
functionality includes interaction with smart home devices and synchronized services such as email, 

calendar, music. “The term chatbot is sometimes used to refer to virtual assistants with a text chat 

interface.” [4]. Chatbots are usually created by using natural language processing technologies (NLP). 
There are also voice assistants that use speech recognition and synthesis in addition to text processing 

algorithms. 

Due to the exponential growth of computing power and textual content in recent years, the NLP 

industry is developing very actively: new architectures of in-depth learning models are published, 
existing ones are improved, and active work is carried out to increase the training efficiency of current 
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state-of-the-art methods [5]. The development of the sphere is also facilitated by the expansion of 
possible areas of application: technologies for processing the natural language are used not only in 

search engines but also to automate call centers and FAQ-systems, write news [6], program code [7], 

etc. At the same time, for a wide range of languages, there is a problem with the quality and quantity 

of task-specific data. That is why a lot of research and practice is devoted to transfer learning and 
language model creation. 

2. Description of Problem 

In general, the virtual assistant system contains various functional modules that are used to 

generate a response and execute actions, like ordering or reservation.  
Figure 1 shows one of the possible options for implementing the architecture of an intelligent 

assistant system, the functionality of which includes more than ten different functional modules such 

as search, viewing news, weather forecasts, and ordering. 

 
Figure 1: Virtual assistant system architecture 

Microservice architecture is a quite popular design approach for this kind of product since it is 

aimed at decomposing functionality into separate services, minimizing the coupling [8], and 

maximizing cohesion [9]. It is also worth noting, that in our case, the interaction takes place using a 
text interface through the web application and messengers with the implemented Bot API 

functionality. Flowing through API and authorization, the user request enters the message processing 

service (MESSAGES on architectural diagram). The figure shows that MESSAGES interacts with the 
natural language processing service called NLPService, the development of which we are considering 

in this publication. 

Localization for the countries of Europe and the CIS region is provided, with special attention paid 

to the Ukrainian, Russian and English languages. That is why it is important in our case to build an 
NLP service with multilingual support. Therefore, for this purpose, a combination of neural networks 

with a high-level context understanding, generalization ability, and machine learning algorithms with 



an optimal speed-accuracy trade-off would be used to develop common functionality for this domain, 
such as intent detection, named-entity recognition, text normalization, etc.  

Most of the existing open-source solutions have a weak coverage of Eastern Europe, and high-

accuracy, multifunctional systems with support for CIS languages are either difficult to integrate or 

extremely expensive. Therefore, the work aims to design and develop the natural language processing 
service for a virtual assistant system using the synthesis of standard machine learning and state-of-the-

art deep learning methods with special attention paid to the productivity and accuracy of models for 

Russian, Ukrainian, and English languages. 

3. Literature review 

Various algorithms and methods of the natural language processing sphere are used for the tasks of 

text mining and transformation of the user's natural queries into a structural form. In narrowly focused 

systems, the use of approaches based on rules and regular expressions is justified [10], because they 
have fairly high productivity and do not require significant computational resources. However, if we 

are talking about open-domain virtual assistants, then their high intelligence can be achieved using 

deep neural networks.   
One of the well-established solutions is recurrent neural networks (RNN), ideal for sequential data. 

Widespread RNN-type networks are LSTM and GRU, which solve vanishing/exploding gradient 

problems. The gated recurrent network has fewer parameters than long short-term memory but may 

achieve compatible accuracy in some speech recognition tasks [11].  
In 2014, the Encoder-Decoder architecture with two recurrent neural networks was proposed. The 

Encoder encodes a sequence of characters into a fixed-length vector, and the Decoder decodes the 

context vector into another sequence of fixed-length characters [12]. Unlike standard recurrent 
models, this architecture allows obtaining the resulting sequences with a different length from the 

input sequence. One of the Encoder-Decoder implementations, Seq2Seq, has brought significant 

improvements in the quality of machine translation [13]. 
In recent years, the state-of-the-art results of natural language understanding and generation have 

been demonstrated by various implementations of the Transformer architecture published in 2017. In 

contrast to Encoder-Decoder, Transformer contains not recurrent and convolutional layers but dense 

ones along with proposed multi-head attention mechanism and positional encoding for simultaneous 
sequence processing. 

Language models, networks that determine the probability of characters, words, n-grams 

occurrence in the sequence, based on Transformer architecture, such as BERT, Transformer-XL, 
BigBird, and autoregressive GPT and XLNet,  demonstrate state-of-the-art accuracy in most tasks of 

the field after training on massive text corpora.  

The disadvantages of this architecture include the need for significant computing resources for the 

training stage and inference. To address the problem of slow model computations one can use 
quantization to reduce weights size and degrade accuracy [14], model transfer from 

Pytorch/Tensorflow backend to ONNX Runtime, or knowledge distillation procedure with a smaller 

model creation [15]. 

4. Models and methods development 

4.1. NLPService concept 

As it was stated in the problem description section, the natural language processing service 

functionality includes intent detection, named-entity recognition, and text normalization. However, 

this is not enough for an open-domain assistant. The complete functional requirements are 

demonstrated in the use-case diagram (Figure 2). 



 
Figure 2: NLPService use cases 

Generally, intent detection is the task of retrieving user intention from the input sequences of text, 

speech, or even images. For example, the sentence “show me the wind speed forecast for tomorrow” 

can be recognized as intent “weather.wind.speed”. The level of detail, in this case, depends on the 

specific requirements of the system, i.e., it is possible to determine the intention of "weather-forecast" 
instead, however, then it is necessary to introduce additional logic into the weather service to obtain a 

specific action after it has been called. To build the NLPService, the first option would be used, since 

this approach reduces the functional load on the services. 
Named-entity recognition (NER) is a very important part of text mining. The NER task aims at 

extracting from the text sequence as many useful named entities (e.g., names, time, and date) as it is 

possible. These entities then flow to the service, defined by the intent, and are used to personalize 
answers or make relevant service responses.  

Text normalization is a required stage after named entities have been recognized since in natural 

languages there may be various declensions of words, plurality, and genders. Most of the time, the 

goal of normalization is to find the normal form of the word or group of words, but in some cases, it is 
important to match the form with the surroundings as the context of the sequence may be changed 

otherwise.   

Context question answering is the core part of quick answer functionality. Given the question and 
text paragraph, the task is to return the segment of the paragraph, which is the most relevant. For the 

open-domain question answering where there are multiple paragraphs, it is required to use ranking 

first. The purpose of this action is to find one or several relevant passages in the storage, where there 
can be billions of them. To speed up the ranking, multi-label topic classification, which predicts 

multiple labels (e.g., science, history, art) for every text sequence, would be applied. 

4.2. Fine-tuning BERT for question answering task 

To solve the problem of answering the question (QA), a deep learning model based on the BERT 
architecture (Figure 3) would be used. Bidirectional Encoder Representations from Transformers or 

BERT is a language model [16] based on the Transformer architecture, which is an improvement of 

Encoder-Decoder, where the encoder creates context vector from the input sequence and the decoder 

generates output based on the hidden states. A feature of the Transformer is an improved attention 
mechanism and the use of feedforward networks, which allows processing the entire input sequence at 



once, in contrast to the RNN networks. Only encoder layers are used in BERT, along with 
embeddings and pooling. BertEmbeddings uses tokenizer output to create a representation of the input 

sequence and feed it to the BertLayers. Word_embeddings layer is used to build the vectorized form 

of input tokens, position_embeddings introduce such an important property as the order of tokens in 

sequence [17]. The token_type_embeddings layer helps the model to understand where one sequence 
ends and another one starts, in the case of question answering those segments are question and text 

paragraph. For this purpose, the special token “[SEP]” is used. There is also a LayerNorm to 

normalize the activities of the neurons and reduce training time [18]. The dropout regularization 
method with a 0.1 probability to deactivate hidden units is used to reduce model overfitting. 

 
Figure 3: BERT for question answering architecture 

BertLayer contains a dense layer with GELU activation and self-attention – a mechanism, which 
“allows the inputs to interact with each other (“self”) and find out whom they should pay more 



attention to (“attention”)” [19]. Several successive applications of this layer with different weights 
allow the model to form a representation of the meaning, grammar, or other aspects of the input 

vector with the help of other elements of the text sequence. The size of the hidden layers and their 

quantity depends on the model type, for this work the 12-layer network with 768 units each was 

chosen.  
As the BERT model pretraining includes those tasks: masked language model (MLM) [16] and 

next sentence prediction (NSP) [16], there are at least two possible options for output selection. The 

first one is the sequence output, which is the result of forward pass through all of the encoder layers 
sequentially for every input token. During the training, the output from hidden layers is taken for the 

MLM task, where the model has to predict words, which are replaced by the special mask token, in a 

sequence. The second one is the pooler output with a single result for the “[CLS]” token (this is the 
first element of input), the purpose of this type of output is to return the confidence of similarity of 

two text sequences for the NSP problem. However, the pooler output can also be used for various text 

classification tasks.    

For the question answering procedure, we add fine-tuning head on top of the model. The sequence 
output flows to the dropout and linear layer, which returns logits for start and end positions for each 

input token. After that, all that remains is to apply the argmax function to get start/end token positions 

of the answer. Fine-tuning for 5-7 epochs on the combination of localized SQUAD v2.0 [20] and 
SberQuAD [21] datasets with a batch size of 20, a maximum input sequence length of 384, and 

scheduled learning rate with an initial value of 5e-05 shows compatible accuracy metrics.    

4.3. Extended method of knowledge distillation 

The inference speed of the obtained model is unaccepted for our situation. To solve this problem 
the extended method of knowledge distillation would be used. The method itself represents procedure, 

where the high-quality model (teacher) participates in the training of a smaller network (student). This 

significantly increases the speed of inference, as the student is not so complicated, and decreases 

required training time [15]. Knowledge transfer is achieved using a modified loss function: 
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where L  is the cost function for the training procedure; 

─ a is the distillation parameter, which determines the influence of the teacher model; 

─ Ltrain_loss – loss function of student model prediction and ground truth value; 
─ Ldistil_loss – loss function of student and teacher models predictions. 

It can be seen from the formula that with the parameter α = 1 the standard training loss function is 

obtained due to zeroing of the distillation. For the training loss, one can use any task-suitable 

objective function, but for a distillation term in a form of the deviation of a student from the teacher, it 
is recommended to apply such distance functions as mean square error or a Kullback-Leibler 

divergence [22]. The following formula is used as the train_loss for the question answering task: 
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where CE is a cross-entropy loss function; 

─ start and end are logits for the start/end position of the answer. Logit refers to the tensor on which 
we apply the argmax function to get the position;   

─ start_pos and end_pos – exact indices of start/end for answer span.  

At the same time, the distil_loss function is implemented as follows:  
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where KL is a Kullback-Leibler divergence function; 



─ t or a temperature is a denominator used in knowledge distillation to flatten logits; 
─ S – softmax function, which transforms values to probability distribution; 

─ Ln – softmax function with the subsequent application of the natural logarithm; 

─ start and end are logits for the start/end position of the answer; 

─ startteach and endteach are teacher model logits for the start/end position. 

Our extended knowledge distillation procedure consists of the following stages:  

1. Fine-tune the 12-layer BERT model for a specific task to obtain the best accuracy. 

2. Build a smaller model with 4 layers - DistilBert.  

3. Init student with the teacher weights from the 1st, 4th, 8th, and 12th layers.  

4. Set 𝛼 parameter within [0.3, 0.7] and increase the learning rate by 1-1.5 times.  

5. Train student model on the extended dataset with augmented data.  

The weights transfer is an important part of this method, as it helps to reduce the number of steps 

needed for the optimizer to find the global extrema of the objective function during training.   

4.4. Fine-tuning BERT for the multi-label topic classification task 

The goal of this classification is to obtain one or several labels for the input text. In our case, there 

are 21 topic labels: person, nature, organization, geo, location, facility, product, event, art, politics, 

achievement, science, news, sport, business, religion, encyclopedia, how-to, social networks, NSFW, 

and other. As for the QA task, the BERT model (Figure 4) would be used to solve this problem.  

 
Figure 4: BERT for multi-label classification architecture 



The input text sequence flows through the tokenizer to the model. After the forward pass via 
BERT, the pooler output is used as the fine-tuning head input. The head itself contains dropout 

regularization with drop probability = 0.2 and a subsequent linear layer, which has 21 outputs, one for 

each label. There is also a softmax layer to transform the output into a probability distribution. The 

last step is to pass this distribution through a threshold to zero all unmatched labels.  
The multilingual dataset with 6255 records was build using Wikipedia and news articles 

annotation. Fine-tuning for BERT-base-multilingual-uncased took 7 epochs with binary cross-entropy 

as objective function, learning rate = 3e-05, sequence length = 512 and batch size = 32. A distilled 4-
layers version was build based on this model. The distillation loss function is similar to those, 

presented in equation 1.   

4.5. Fine-tuning BERT for the ranking task 

Fine-tuning for the ranking task (Figure 5) is carried out using the pooler output of the BERT 
model, dropout with p = 0.25, linear layer, and sigmoid to transform the output into the confidence of 

similarity and dissimilarity. 

 
Figure 5: BERT for ranking architecture 

The training dataset contains 185000 Wikipedia query-passage pairs with appropriate similarity 

labels in Russian, Ukrainian, and English languages. For fine-tuning procedure, those parameters 
were chosen: 3 epochs with learning rate = 2e-05, sequence length = 368 and batch size = 4. 

 

 



4.6. Extended method of multilingual open-domain question answering 

For the fast answer functionality, we use the extended method of multilingual open-domain 

question answering [23], the detailed architecture of which is presented in Figure 6. Here 

DistilBertForMultiLabels is the distilled model from the multi-label classification chapter. Laser is the 
technique released by Facebook AI Research to create multilingual vector embeddings [24], XGBoost 

– gradient boosting over decision trees model, which calculates similarity for embedding vectors of 

input sequences, and BertForQA is the model, needed to provide a fast answer (the most relevant 

fragment of text passages) on user request. The simplified algorithm is as follows:  

1. Obtaining topic labels and vector embedding for the user query simultaneously.  

2. Filtering stored contexts based on predicted labels.  

3. Similarity calculation between the query vector and filtered contexts vectors.  

4. Performing context ranking of 50 most relevant passages.  

5. Searching for the most relevant segment among the top-10 passages.  

As a result, this method allows to obtain a relevant text fragment, not the whole paragraph using 
the BertForQA model and to solve partially the problem of paraphrasing and multilingual 

representations with the help of DistilBertRanker. 

 
Figure 6: Multilingual open-domain question answering 

4.7. Fine-tuning BERT for the intent-detection task 

The problem of predicting text query intention is similar to multi-label classification: based on the 

input sequence we need to predict relevant tags. Except for the linear layer in the fine-tuning head, 
which has an output dimension of 76. The training dataset consists of multilingual queries for 76 

different types of intents, such as “knowledge.search”, “products.findTickets”, “place.book”, 



“other.dialogue”, and other. Moreover, there are context intents (e.g. “context.fillPersonGivenName”, 
“context.fillGeoCity”), which would help to manage dialogue context during interaction with a user 

or to extract parts of complex named-entity (full name, address). The fine-tuning procedure is 

performed for 12 epochs with a learning rate of 3e-05, batch size = 64, and sequence length of 64.   

4.8. Fine-tuning BERT for the named-entity recognition task 

The NER is one of the sequence tagging tasks, where for each token of the input sequence the tag 

is assigned. To solve this problem, the BERT (Figure 7) trained on the dataset with 19 different types 

of entities from CoNLL 2003 [25] would be used. The model outputs predictions in the format of 

BIO-markup, where B reflects the beginning of the entity, I - the words inside the entity, and O - the 
absence of entity. For example, My – O, name – O, is – O, Nikita – B-Person, Syromiatnikov – I-

Person.   

 
Figure 7: Bert for named-entity recognition architecture 

In the figure above, the sequence output of the BERT is fed into the CRF layer through the linear 

layer. The CRF returns the tag sequence with the highest score. 

5. Implementation 

The NLPService (Figure 8) is deployed in the form of a Docker container, external requests from 

the MESSAGES service pass through a proxy to the corresponding endpoint of the Flask server 

inside. Flask handles query parameters: the called action, input text sequences, normalization 



parameters, and the user's settings. Then they are used to execute the appropriate action from the 
Model. SimBert - developed deep learning framework based on Pytorch Lightning is used to build, 

prototype, and run created models. For the embeddings calculation, Laser and fastText libraries are 

used, normalization algorithms were implemented using pymorphy2 [26] and polyglot [27]. 

 
Figure 8: NLPService architecture 

6. Models evaluation and NLPService testing 

6.1. Models evaluation 

To assess the accuracy of the predictions of the developed models on test sets, we use F1 measure 

- the harmonic mean of precision and recall, where precision is the fraction of true positives among 

true positives and false positives and recall is the fraction of true positives among true positives and 
false negatives. 

The precision of the question answering models, however, is determined by the ratio of the number 

of correctly predicted words of the answer to the total predicted number of words of the answer, and 
recall - the ratio of correctly predicted words of the answer to the total number of words in the true 

answer [28]. In addition, the EM or exact match - is also used as a measure for this task. EM = 1 for 

the exact match of the predicted answer with the ground truth, and 0 in all other cases.  

From the results (Table 1), one can see that the main metrics are the F1 for the whole test set and 
separately for Russian (F1 ru), Ukrainian (F1 uk), and English (F1 en) languages. Moreover, an 

important metric is the model performance, described by the time in seconds spent to process 100 

prediction requests. It is worth noting that all of the evaluations were performed on a graphics 
accelerator NVIDIA RTX 2080TI. QA models testing was performed on the SQUAD v1.1 eval set to 

compare the results with a similar deeppavlov-squad-bert model [29]. In addition, the manually 

assembled test set [30] was used for the Ukrainian language. The constructed named-entities 

recognition model was compared with the existing deeppavlov model [31]. However, it is impractical 
to compare intent detection and classification models with analogs, since those tasks require a set of 

individual classes that meet specific requirements. 
 

 



Table 1 
The results of the models' evaluation 

Models F1 EM F1 ru F1 uk F1 en Exec. time for 
100 requests, sec 

Ranking: Laser-XGBoost 0.809 - 0.82 0.812 0.796 0.015 
Ranking: BertForRanking 0.875 - 0.93 0.917 0.784 36.2 
Ranking: DistilBertForRanking 0.865 - 0.928 0.944 0.732 12 
QA: BertForQA 0.891 0.813 0.905 0.921 0.875 2.35 
QA: DistilBertForQA 0.824 0.68 0.83 0.815 0.817 1 
QA: deeppavlov-squad-bert 0.885 0.809 0.89 0.885 0.88 3.4 
Intent detection: BertForID 0.996 - 0.997 0.995 0.996 2 
Intent detection: DistilBertForID 0.993 - 0.995 0.993 0.991 1 
NER: BertForNER 0.875 - 0.892 0.862 0.869 15.2 
NER: deeppavlov-ner-mult 0.886 - 0.89 0.858 0.909 18.4 

In general, the evaluation results demonstrate the ability of the developed models to compete with 

existing solutions due to small deviations in accuracy and a huge increase in productivity up to 3 

times for distilled models. 

6.2. NLPService testing 

The context question answering is demonstrated in Figure 9. One can see that although the cons of 

triboelectric devices are not discussed directly in the text, the model correctly identified the closest 

paraphrased fragment of the context with the answer. 

 
Figure 9: Question answering demonstration 

Figure 10 shows the web interface for implemented intent detection functionality. For the input 

sequence “Book a table at the nearest Italian restaurant for two” the intent “place.book” was obtained 

with the confidence of 0.97, which is true, since this class is the most relevant among the available. 



 
Figure 10: Intent detection demonstration 

7. Conclusion 

This material provides a concept and detailed development procedure of a natural language 

processing service for an intelligent digital assistant system. The tasks solved by the NLPService 
include intent detection, named-entity recognition, question answering, ranking, multi-label 

classification, and text normalization.  

The method of model optimization based on knowledge distillation, which uses certain procedures 
for weights initialization and training hyperparameters selection, was proposed. It also simplifies the 

process of training multilingual four-layer models of BERT architecture for specific tasks based on 

the basic twelve-layer version and demonstrates 2-3 times increase of inference performance without 
significant deviation in accuracy for Ukrainian, Russian and English languages on the tasks of 

ranking, intent detection, multiclassification, and question answering.  

Also, a method for open-domain question answering has been developed. It uses gradient boosting 

over decision trees, multilingual vector embeddings, and deep learning models, which allows 
obtaining a relevant text fragment and partially solves the problem of paraphrasing and multilingual 

representations. 
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